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are investigated theoretically. Resonance fluorescence of two-level atoms
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I. Introduction

During the past several years, the area of laser-induced surface

chemistry (LISC) has become an established interdisciplinary pursuit among

researchers in the fields of physical chemistry, material science and 10

optics. LISC has been reviewed by several articles for various applications
including microelectronics fabrication, heterogeneous catalysis and

4spectroscopy. The fundamentals of LISC for conventional surfaces were

5,6explored in our earlier review papers, and more recently we have studied

resonance fluorescence of two-level atoms on both smooth7'8 and rough..

9 10surfaces and light scattering from a metal grating. "

The phenomenon of phase-conjugated surfaces (PCS) has been recently

10.

explored, where both the propagation direction and the overall phase factor

for an arbitrary beam of light may be precisely reversed via nonlinear

optical effects. I1112 Such effects, in general, include three-wave mixing,

e.g., second-harmonic generation, parametric mixing and pockels effects,

originating from the X(2) term of the susceptibility, and four-wave mixing,

e.g., third-harmonic generation, Raman and Brillouin scattering, dc Kerr
(3).

effects and two-photon absorption, originating from the X terms of the

susceptibility.

In the present paper, we shall first review LISC for conventional

surfaces before presenting the new phenomena on PCS. In Section 2, we

review resonance fluorescence of two-level atoms near smooth and rough

surfaces. A radiative dipole near a PCS will be studied in Section 3. In VAN

Section 4, laser-induced processes at PCS will be explored in detail, where

a phenomenological treatment and a hydrodynamic theory for laser-induced

periodic structure and PCS reflectivity are analyzed. Applications of LISC

for PCS and a summary are presented in Section 5.

.1 4
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II. Resonance Fluorescence of a Two-Level Atom Near a Metal Surface

The lifetime of an excited molecule has experimentally been found to

13vary dramatically as a function of distance from a surface. It decreases

or increases depending on the distance from the surface. A number of

researchers have examined this effect from the viewpoint of reflected field

theory, i.e., the basic calculation is concerned with the interaction

between an excited molecule and its own reflected radiation field.

Reflected-field theory provides generally good agreement with

experiments. 7 9 ,1 3 2 1

When an adatom is driven by a strong resonant, driving coherent field,

it creates for the atom or molecule an environment where the probability of

stimulated emission can exceed that of spontaneous emission. Under this

condition, the dynamic ac Stark splitting of resonance and nutational

oscillation of the emitted light intensity become important parts of the a

laser-driving process, such that interesting "resonance fluorescence" and

20
other nonlinear optical phenomena can occur.

We have recently derived a set of surface-dressed optical Bloch

equations,7 -9,19-21 by which we can examine the dynamics and relaxation of

an adatom on the surface. In these equations, we are able to evaluate the

resonance fluorescence spectrum of a two-level atom near a metal surface,

taking the following factors into account:

(i) The reflected electromagnetic field effects due to the presence

of the interface

4 (ii) Collision dephasing

(iii) Surface-induced dephasing due to the reflected photons

(iv) Resonance excitation of surface plasmons

(v) Random-phase fluctuations of the laser

",...-_.
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Based on these studies, we have also been extending the flat-surface

resonance fluorescence calculations to the rough surface case, which is

modeled as a hemispheroidal protusion on a perfectly-conducting surface.
9  ,

We would like to discuss our progress on the surface resonance fluorescence

spectrum below.

A. Resonance Fluorescence at a Flat Metal Surface

Recently we have studied the resonance fluorescence spectrum of a two-

level atom near a metal surface by means of a set of surface-dressed optical

Bloch equations (SBE), which include the effect of surface-reflected

photons, i.e., photons emitted by the laser-driven atom and reflected by the

7 8
surface.7

' Within the rotating-wave approximation, the SBE take the form

(t) -+iA iQ(t)/2 0 2 1(t) 0 '-

dt 1F (t = n i+(t) Y -inl (t) Q(t) - 1 (1)

1 2(t) 0 -in (t)/2 - 2 ih 12(12) 0

where 1 12><21 - I1><1I in the population inversion of the atom, i is

product of exp(iwLt) and the transition operator li><jl, n(t) is the time-

dependent Rabi frequency, A - w - wL is the detuning of the laser (wL )

with respect to the two-level atom (w2 1), and the dephasing rate constant r2

is the sum of the radiative dephasing 2 and the surface-induced dephasing
2Y

y a (2/i)Im(f)Ii 12 1

To calculate ys we must know the reflected field [Eq. (1)) or the ,

complex function f(d), which can be determined by the Sommerfeld-Hertz

16
vector procedure. For the case of a laser-excited atom emitting near a

metallic half-space, the imaginary part of f(d) has the form

" ,,)" ,e +' ,,' .. ,,,k ." . ., .,, . ; .- . .. .+ ,,?' " ." +.. , ,P . . . • .? . +" . .. " " "" *"" '" " '
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4 2
1[2 2)2 6 24 1{-w w)+1-- ][Itrsinl - -:cosD]SEW p 2 C1 D2

+ 2w6w [ncosD + L sinD]} , (2)

3
where I - 1 and n- (I/D3) + (/D) for the case of the induced dipole

3
oriented parallel to the surface, - 2 and n 2ID for the perpendicular

case, £1 is the dielectric constant for the gas medium, kI = 1Wei/c is the

wave number, w is the emission frequency, c is the speed of light, and D =

102k d is the reduced distance which is dimensionless. The Drude model has

been used to determine the dielectric constant of the metal medium, i.e.,

2
lapC 2(W) - 1 P (3)""'

2(,+i) ' .•

where 6 is the inverse of the relaxation time and w is the plasma

p

frequency. We note that Im(f) has a resonance at asp M wp(l + C 1)-1
/2

which is the surface plasmon frequency of the interface, so that the

reflected field given by Eq. (1) involves resonance energy transfer between V

the adatom and the excited surface plasmon.

In our model, the driving and reflected fields have been treated

semiclassically, and we have assumed the atom-surface distance to be large

(> 30 nm). The relaxation time included in the Drude model for the complex r

dielectric constant of the metal medium represents the dissipation of

electron gas which, together with surface plasmon resonances, influences the
,' %

surface reflectivity and hence the behavior of the reflected field. Here we

0-% could neglect nonradiative transfer of energy from the excited atom to the

% ."..." 2
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metal. Effects of the laser bandwidth are included by means of a phase- r

diffusion model for the driving field. In the weak-field or large-detuning

limit, the power spectrum of scattered light has two peaks: one

corresponding to Rayleigh scattering at the laser frequency L and the other

to fluorescence at the atomic transition frequency w2 1 " For a sufficiently

strong driving laser field, the spectrum exhibits three peaks: a central

one at wo = wL (Rayleigh component), a left one at w = 2L - w2 1 - 6

(three-photon component) and a right one at + 6 (fluorescence i- -.-J

component), where 6 is the ac Stark shift. Results for the peak heights H_,

H0 and H+ are shown in Fig. 1 for the case of a silver surface.
8 The key

feature, which is a unique behavior due to the surface, is that for certain

atom-surface distances H is larger than H+, whereas in the pure gas-phase ,.

resonance fluorescence spectrum H_ is always less than H+ (due to molecular '*

collisions for positive detuning). klso, the population inversion of the

adatom and the resonance fluorescence spectrum, as well as the surface--

induced phase-decay constant of the adatom, show strong oscillatory behavior

7,8 F.
as a function of the adatom-surface distance.

B. Resonance Fluorescence at a Rough Surface

For a rough surface, let us consider a surface protusion modeled by a

q plane 9 ,22'23
prolate hemispheroid on top of a plane. We note that this model has

24 '-*'-'2
been shown to be identical to a full spheroid in a vacuum, so that our

calculations can also be used for an ellipsoidal cluster. The two-level

adatom, which is located at a distance d from the top of the hemispheroid,

is driven by a laser. The prolated spheroidal coordinates (F, ,*) are used

to calculate the reflected field. We define

I"(a + d)If (4)-".')

V V V ~* '~ *~., -,4"*%, o
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2)2 1/2" - -"
f (a2  b (6) . *1.

where a and b are the semi-major and semi-minor axes of the hemispheroid.

The reflected field at the position of the adatom (transition dipole) in the

22~

near-field approximation can be written as22 "

Er C- + 3.,(7)
n 4(f&)

n
where Q n denotes the Legendre function of the second kind and p is the ,_

induced dipole moment. The expansion coefficient C depends on the laser
n

amplitude E0 and parameters &0 and & Based on the surface-dressed optical is *

7,8 -L#
Bloch equations appropriate for the excitation and dissipation of a two-

level adatom near a hemispheroid, we find the surface-induced phase ":. i".-

relaxation constant y to be given by

Y = (2/)i)Im(F) , (8)

where

1 r-& )% Q(&o) + r1 (9)

where c is the complex dielectric constant and r is a somewhat complicated

function of &0' & and c.

A sharp resonance enhancement of the adatom-hemispheroid inter3ction,

through the reflected field at the atomic site, occurs when the specific

shape of the prolate hemispheroid corresponds to a resonant excitation of - -.

plasmons (see Fig. 2). The time oscillation of the level population

:,." .' ".",-..".', ."." ,.".' "...............'..-."-."....-."". .....-.-. :.".............-.-. . '. S' -5 : .



. % .•-J
8

decreases as the shape of the hemispheroid approaches the plasmon resonance.-

We also find that the strong-field three-peak fluorescence spectrum is

strongly influenced by the roughness of the surface. The resonance r%

excitation of the plasmon in the hemispheroid remarkably enhances the N

adatom-surface coupling, such that the dephasing processes broaden the
o°I t.. "

linewidths of the spectrum. In the small detuning case, the spectrum has a

distinctive three-peak nature, where the three-photon side peak has a

measurable height which is almost comparable to the fluorescence side peak.

The plasmon and reflected-field broadening influence equally the three

spectral peaks. In the large detuning case, the height of the three-photon

peak is decreased, and the three-peak spectrum is transformed to the weak-

field two-peak structure.

III. Radiative Dipole in the Presence of a Phase-Conjugated Surface

A. Phase-Conjugated Mirror Cavity .

Recently, we have evaluated the lifetime variation of a dipole centered -,

26
in a spherical cavity made by a phase conjugated mirror (PCM) (see Fig.

3).

27.
Following Kuhn, the equation of motion of the dipole U (assumed to be '. ,

harmonically-bound charge) can be written as

2
+bwo} - E b '(10)

where w is the oscillation frequency in this absence of all damping, m is

the effective mass of the dipole, ER is the reflected field at the dipole

position due to the presence of the PCM cavity, and b0 is the damping

constant (inverse lifetime) in the absence of the mirror. The dipole moment

p and the (complex) reflected field E oscillate at the same frequency,

iRe.,

*~~5'~~ ~ VA*-.tA A .k.k - ~ o * % '°



9

Pe- i" + &Ajlt e-bt/2

and

0 -i[W + Awit -bt/2 *(2R j e e12

0Iwhere p0 and ER are the amplitudes of the dipole oscillator and reflected

field, respectively, and Aw and b are the frequency shift and the inverse of

the lifetime, respectively, in the presence of the PCM cavity. The

frequency shift is found to be quite small and is thus unimportant for theI2
proeof discussion in the paper. Recognizing that b adtemantd

2 0 2
of (e 0 ~M)ER are normally very small compared to w ,we then have

2
b 0 + [e] 0 (13)

To examine the variation of dipole lifetime, we reduce the problem to the

calculation of the reflected field by the PCM at the dipole position.

d th Hetz ecto mehod 28

By using th et etrmto, the field near the dipole is easily

found to be

E 2jplk*3( + 1f I se- i iw*t (14)
r 1 ir2 [ 3 2'cs e(k*r) (k*r)

IN 0 0i'

3 1 i ~ iw*t
E -Pk* (i + in M - 3 b 2 tsine e (15)

where r is the linear dimension of the dipole (normally k*r << 1), and 9
0 0

V%'.

n+ in2 is the complex reflectivity of the PCM mirrors where

= e ( 1 ) -. .-

I=.

1 2
cwisrelct ofliht and the definitude s of E dip Ollto and r efleatdly.

showndI Fig.ective anot thand b <a d t akingequenc averageandth rnese t of-_':"

: -' ~. J .-'..: :-
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e for the field at the dipole site, we obtain the imaginary part of the

reflected field as

0 3 3 n2 _2__'"(17

Im(Ej) k 3 (17)
(kro) (-kr0

where k is the propagation constant, k w/c. The normalized decay constant

is

b= 1+ +
b ".- ,,

8 + 2/3 1 (18)
3 2 k k1 (2)2 (kr) (kro)2 

where I I n 2 + r is the magnitude of the reflectivity, and 5-I is the

normalized lifetime of the dipole.

Figure 4 displays typical curves for the variation of the lifetime for

a dipole in a PCM cavity, as a function of 2 l with a fixed reflectivity
n2~ 1

*r~ i 1%, 2% and 3%. It is noted that due to the focusing nature of the

reflected radiation wave by the PCM, the coupling between the dipole and

reflected field can be very strong. In the case of the phase-shifted ",.

reflection, i.e., r2 0, there are three cases worthy of note:

(a) There is a critical value of defined as (r2/nl)c, when

(n2 / )c and b 0, i.e., in this case the lifetime b 1 of the dipole in

the PCM cavity can be infinite.

(b) In the region r2/n, > 0, B > 1, the dipole in the PCM cavity can
n- %

decay faster than that in free space.

(c) For the region of n (q2//n)c
, the dipole decay constant .

can be negative, i.e., the amplitude of the dipole oscillator can be

amplified, due to the pumping process in the PCM.

.2% .
- .... ~Ya.. . . . .. . . . . . . . . . . . . .



IV. Laser-Induced Periodic Structure (LIPS) on Phase-Coniugated Surfaces

Laser-induced periodic structure (LIPS) on conventional surfaces has

been studied over the past several years, where only one laser was needed

for LIPS, which has been explained by the possible mechanisms: (i)

formation of a surface polariton with periodic electric field acting on the

surface atoms; 19'30'3 1 (ii) laser-induced longitudinal acoustic phonon of

the substrate which forms a standing wave;32 and (iii) small

inhomogeneities or roughness of the surface layer which interact with the

33
incident laser and forms a dipole layer. In mechanism (iii) the

interference between the dipole field and the refracted field in the

substrate in turn leads to inhomogeneous energy absorption and thus the

redistribution of the surface atoms.

In contrast to the above described LIPS on a conventional surface,

where only one laser beam is needed, two laser beams are usually required

for LIPS on PCS. The novel method of LIPS on PCS using the spatially

nonuniform reflectivity variation, both in amplitude and phase, of laser- I,

influenced interface systems include: (i) electron concentration changes r

(for metal and semiconductor surfaces); (ii) surface deformation due to

laser-induced pressure (or density) variation of the surface layer; and

(iii) the nonuniform thermal expansion of the absorbing layer. Surface

heating and deformation by a single pulsed laser have been reported for both
.34 35

metal and semiconductor surfaces. Laser-induced profiles of absorbing

dye in solution have also been proposed, where two interfering laser beams

(at the same frequencies) were used for LIPS caused by the concentration

modulation of the dye.
3 6

In this section, we *nall present a unified treatment for LIPS on PCS

based upon a hydrodynamic theory. The mechanisms of LIPS and the formation

. .. .7o
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of PCS will be explored mathematically. Special cases with analytic results

and the appropriate conditions for the validity of previously published

results will be discussed.

A. Phase-Coniugated Surface

Phase conjugation has been conventionally recognized using stimulated '

scattering (Raman, Brillouin and Rayleigh) and parametric processes (four-

wave mixing and two-wave mixing). The novel method of phase conjugation .'

using the nonuniform reflectivity of the absorbing layer is shown in Fig. 5, -'

where the initially uniform reflecting surface may form a periodic structure

caused by the interference of two incident beams. This process requires the

nonlinear optical effects of the surface layer, e.g., nonlinear polarization

p . where I is the total wave vector given by the sum of the

reference (strong) wave and the signal (weak) wave i by
1 3

i(W t + i(W3t + -r)+ = -(Ee1 + E 3e 
3  +3 + . (19)

The laser-influenced reflectivity (R), which in general is time-dependent

and is a complex variable with amplitude and phase modulation, may be

expressed (up to the first-order expansion of the laser intensity) as

R - R0 + R , (20) __."

where R is the reflectivity from a conventional surface and is proportional .
0

to the total intensity, IE1I2 + I l3. A is the expansion coefficient of

the interference pattern (or reflectivity modulation) formed by the incident
'.' •'.',

waves, and R is given by

R EE *e + c.c. , (21) " '

1 1 3

ae . ".

h...¢-

.4-.
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where we have assumed the degenerate case, 1 W 3 3  and have used the

rotating-wave approximation (RWA). A; is the phase mismatching vector

defined by A f - For the one-dimensional and degenerate (k - k3 i

k) case J = 2kzsin(e/2), such that the interference pattern is governed

by the angle () between the incident waves. We shall show in the next
section that the lifetime of the interference pattern is proportional to the'

sci tttto

inverse of .2kkrl , i.e., a small angle (in the order of few mrad) is

required for a long-lived interference pattern to be observed.

The overall reflected waves defined by the laser-modulated reflectivity

may now be calculated by using RWA to eliminate the irrelevant terms,

whereby we obtain from Eqs. (19) and (20)

iR( + )
ref 1 3

-i •r -n "
pe wt + 4*

0 1 3 )+ e e n (E e m n (r E*,
m~n1, '3 (22)

Thus the total reflection field, r consists of three parts: (i) the
ref

usual reflected fields from the the unperturbed surface, the R terms; (ii)

the reflected fields from the laser-perturbed surface in the usual way,

i.e., from the incident r to the reflected -r direction; and (iii) the

reflected fields in the phase-conjugated forms, the E* () terms. The
n

reflectivity of the phase-conjugated surface (PCS) defined by the intensity

ratio between the signal wave and its conjugation becomes '

This is proportional to the square of the nonlinear coefficient of the

surface layer and the intensity square of the reference wave (E ), which is

*e-° d

°9.'

.4°
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L__

usually much stronger than the signal wave (E 3) e note that the above

obtained results involved several assumptions: (i) the pump depletion of

the reference wave is ignored; (ii) steady-state reflectivity (or

interference pattern) is assumed; (iii) instant energy transfer (or local

heating) of the surface layer is assumed; and (iv) heat diffusion of the

surface layer and attenuation of the fields are ignored. For a rigorous

treatment, these assumptions will be removed in the following sections.

B. Hydrodynamic Theory for LIPS

The generation of density and temperatures fluctuations following the

absorption of light is known as a stimulated thermal process, where the

light-induced modulation of the refraction index of the absorbing layer can

37
act as a phase grating in the diffration of incident light. The full

dynamics of a thermal grating may be described by a hydrodynamic theory

which includes the thermal processes of the absorbing media and the optical

nonlinear effects (or polarization) caused by laser fields. The complete

set of hydrodynamic equations which couple the thermodynamic variable

(density, internal energy and temperature) of the medium and the electric

fields of the incident beams are given 
by3 8

au = nc- 2 +DV 2  U/ (24) "
at 4w.

-T _ - K2T - Fa = U/r (25)
CV Ttat

2 2 2 a 2 2 e 2 2a2p _ v rw(y p) - FV T = rV(E) (26)@ at2

n 2 a21 - 2 a2.

22 2 (27)
* at c at

,.. -4
,, i'....
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Here U is the internal energy of the medium with absorption coefficient a,

diffusion constant D and thermalization time T; T and p describe the

temperature and density fluctuation (normalized by their equilibrium

values); K is the thermal conductivity and CV is the specific heat at

constant volume; F is an appropriate coupling constant and n is the

effective viscosity; BT is the bulk modulus (or thermal expansion

coefficient); and ye is the electrostrictive constant. Equation (26) is

just the usual Maxwell equation with a nonlinear polarization relating to

the dielectric constant (E), density, temperature and field amplitudes by .-

NL [()T P + (1)1:) T]( i4v) ffi ( P + YTT)(gI4ii) •(28):" ""e
aL aT aT P~ 4 = e T

Employing the slowly-varying envelop approximation (SVEA) and RWA which

eliminates the irrelevant (or nonresonant) terms, we obtain a set of

simplified equations for the amplitudes of the density, temperature and

electric fields as

2 + nc] i
q U nc- (E.E* + EE 4  (29)a t + V2+'U1 ,f 1 3 2 4:-:_

a CBT

2 2 2
2 W Fw yq

P- +---'r -j-(E El + E*E4) (31)

at2 0at I By 1 8 13 24
* a a ik% "..

[- - E = -n ' (32)
az cat 3 21 elI Ti

4n

ana E (Yl. (33)
az c t E 4  .2  2'e.1 YT

* where

q .C Kq y YC/C(34)

1 -R • -

'J,_P A:I*J'-W''W'J J e2J:
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are the k-vector and decay time of thermal grating and the specific heat

ration, respectively; w0 and r0 are the frequency and linewidth of the

acoustic phonon wave given by w0 = wave velocity x q, r0 IS rq2. In deriving

the above equations, we have further assumed the degenerate case, w1 = J

w, k = k k - nw/c and ignored the small absorption in the thin layer,

exp(a) 1 1. The amplitudes of the incident (1), reflected (92), probing J

(0 ) and the phase-conjugated (i ) fields, internal energy, density and the
443 4

temperature are defined by

i ( _t - r.)"

e + c.c.) (35)

where i i is E Tit U1 with j - 1,2,3,4. Similar to that of E3 and E V

equations for E1 and E2 are not shown here. They are needed only when the

pump depletion i.e., the variation of E with z, is considered.
1

We note that within the SVEA, the thermal grating is formed in such a

way that only the relevant component of the reflected wave meeting the

energy and momentum conservation is strongly coupled, where the phase

matching condition is met between the the probe (E3 ) and the conjugated (E )
3 4.

waves through this intrinsic feature of the thermal-grating-induced acoustic

wave. This feature may be clearly realized by the steady-state solutions .,,

for the coupled equations (29)-(33) which reduce to

dEd --d - " IE I 12 E 3  - 2 E 1 E 2 E , ( 3 6 ) .? :
d- = 3 1E2I2E4 + 4 EIE2E3 

(36)

*where Bjare the appropriate coupling constants, proportional to the decay ' '._
time of the thermal grating defined in Eq. (34). These steady-state...--

*equations are similar to those of the degenerate four-wave mixing FWM), , '-

U . '4

4 2

44 .'4 * * -. .-...-. '..'.-. '2

w 

.

are e at 

.
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. where E and E2 are the pump beams and E3 and E4 are the signal (probe) and

the conjugate beams. The first terms on the right-hand sides of the above

equations describe the nonlinear refractive index changes caused by the

optical Kerr effects, while the second terms account for the phase-

conjugated FWM. A complete description of the dynamics of LIPS requires the

numerical solutions of the above described coupled equations. For tractable

results, we shall discuss some of the special cases under appropriate

assumptions.

C. Special Cases

39
For the linearized case (or the liquid limit)3 , the absorbed energy of

the surface layer is instantly and locally thermalized, i.e., the diffusion
L

term is neglected and the internal energy reaches its steady-state obtained % .P

by taking the limit of D ) 0 andT -*0 in Eq. (29),

U -T lc(E E* + E*E) (38)

s 4wr 1 3 2 4

In this case Eq. (30) becomes a usual heat diffusion equation .t
2

a T 2 1 1 !(- + rT - Dz)Tl - Fl I ,,S(3)-:-.:

az
F . "M

S (T s  (40)

where we have generalized the heat diffusion equation into the three-

dimensional system where the heat diffusion in the radial direction causes
N2

the decay of the thermal grating given by rT = Dq , and heat absorption of

the surface layer in the normal (z) direction causes the LIPS via the non-

uniform thermal expansion of the surface layer. F is a coupling constant

and P1 denotes for the time derivative of the density. We shall now

calculate the amplitude (height) of LIPS based on a simplified version of

%.'. \*
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Eq. (39) called the "surface heating" system. This reduces the "volume

heating" system of Eqs. (39) and (40) into 34

a a2
(- + rT)T 1  Dm- 2 T1 + Fp 1  , (41)

at az

with the initial condition Tl(t 0) 0 and boundary condition

KT -0 -(- R)E0  (42)

where R is the usual reflectivity of the incident E2 and the reflected

E3,4 wave, and E0 is defined by E0 
= E1E* + E*E4 evaluated on the surface3,4

plan, z = 0. Under the condition of isotropic thermal expansion, the

amplitude of LIPS is given by

BT d

"

Q(t) - dz Tl(z,t) (43)

Thus the variation of Q(t) is governed by

(a + rT)Q(t) B1-R)Eo/3 ()

where we have neglected the density coupling term, and in deriving Eq. (44),

we have used Eqs. (41) and (42) and also assumed (T/az) at z - is zero.

The amplitude (height) of LIPS may then be calculated from Eq. (44) whose

exact solution, for Q(T - 0) - 0, is given by

(1-R)BT t erTt-t)owt.
Q(t) - dt' e . (45)

We note that the time-dependent profile of the LIPS depends upon the thermal

grating decay rate, rT, and the evolution of the fields Eo(t) = El(t)E*(t) + .V

E(t)E4 (t) evaluated at the interface plan z = 0. For the cw or square

pulse case, it is easy to find
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.% .%.

(1R)BT -r t
T___ TQ(t) 0 3rT (1 - e )E0  , (46a)

_Tr,_

2 41n2 2~ *6r = Dq - D(-,-) sin Tj (46b)

where the steady-state amplitude, for rTt >> 1, is proportional to E0/rT.

We note that formation of LIPS with significant amplitude requires two

conditions: high enough applied field (E0 ) and long enough thermal grating

lifetime, i.e., damping factor Because r is proportonal to Dq

we require a small diffusion coefficient (D) and a small angle, i.e., q =

2ksin() is small. The latter condition may be achieved by lasers with

short wavelength and/or by small propagation angle between the pump (A ) and

the probe (A3) field.
3

To include the density fluctuation effects in LIPS, the following

coupled equations may be obtained

2P + rP + a P + F 2Q - BI1E 0 , (47) .-.

+ rTQ + F P - B2E 0  (48) e..

wherewbere P is the density fluctuation (or laser-pressure) induced

amplitude of LIPS, r and 0 are the associated damping factor and

frequency, and F1, 2 and B1, 2 are the appropriate coupling constants. The

steady-state solution of Eqs. (47) and (48) is straightforward and will not

be shown here. We, however, note that the overall amplitude of LIPS in

general is a complex variable and time-dependent.

D. Reflectivity of PCS

The reflectivity of PCS defined by Rc s  IE412 /IE312 evaluated on the

z - 0 plane, in general, is time-dependent. Again, numerical methods are

required for the transient values. For the case of a strong pump, with E
1,2
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>> E the steady-state equations (35) and (36) for the case of << '

3,49 1,3

02,4 and 02 = 04 = 0 yield

V
E (0)2 2R (0)-12 = tan2(iOEg(0)E2(0)LI) (49) 1 -

PCS E(O3 1 2

where 0 is proportional to the decay time of the thermal grating defined in

Eq. (34) and L is the effective thickness of the absorbing layer for the -

phase-conjugated back scattering to occur. We note that in the low-

reflectivity limit and El(O) = E (0) = I Eq. (49) reduces to Eq. (23) when

L = 1. Furthermore, the PCS reflectivity can actually be much higher than

one, i.e., the phase-conjugated wave (E is coupled to the strong pump

fields (E and E2 ) and its intensity is "amplified" to a level much higher -S1 2

than that of the probe field (E3 ). The infinite peaks are predicted from ..

Eq. (49) when the conditions of tan x = (n + J)n are met. We should,

however, note that this behavior occurs only at the weak signal limit and

does not occur when the pump depletion is included (strong signal case).

5. Applications and Summary

In this paper we have reviewed the resonance fluorescence of two-level

atoms on both smooth and rough surfaces. For a system of smooth surface, we

have shown the oscillatory behavior for both the resonance fluorescence and

the adatom lifetime as a function of the adatom-surface distance (referred

to Fig. 1). For an adatom on a rough surface, we found that the sharp

resonance enhancement caused by the plasmons excitation occurs for a
I%

specific shape of the prolate hemispheroid (see Fig. 2). Results obtained

from this system can provide us useful characterization in the area of

surface chemistry, such as the orientation and structure of the adspecies,

the strength of the adatom-surface coupling and the role of surface

roughness on the lifetime and fluorescence of the adspecies.

-_'% .-..

, . ' .
°j . . = - . • • - • - . " ". ° " b . % ' = , = . % ° " % = " % - , ' . . . " - " , ° ° . - , • °, ° " % .
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For phase-conjugated systems, we have proposed a new phenomenon in

Section 3, of dipole radiation on a PCS where the dipole lifetime can
I -

actually be infinite. In a pumping process, the reflected field may be

"amplified" by a set of counter-propagating strong fields. In Section 4, we ,t

have discussed LIPS caused by the interference between two incident waves.

The phase-conjugated field, originated from the optical nonlinear effects of

the absorbing layer, may be achieved with a reflectivity much larger than

one. Applications of LIPS include, for example, (i) formation of

microstructures for microelectronic fabrication, where the spacing between

the periodic gratings is only limited by the laser wavelength and the

incident angles of the beams [Eq. (46b)]; (ii) for the application of real

time holography, greater resolving power is necessary, i.e., greater PCS

reflectivity operated at a larger angle (8). This may be achieved by higher

incident beam intensities and/or shorter wavelengths. The materials

suitable for the above described applications will be an absorbing dye with

very high absorptibility and very low thermal conductivity but high bulk

expansion coefficient, referred to Eq. (45). An experimental study of LIPS

using a He-Ne laser and an absorbing layer of epoxy resin mixing with a

brilliant, green dye has been reported.40
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Figure Captions

1. Atom-surface distance dependence of the heights of the three peaks in

the resonance fluorescence spectrum for the case of a silver surface,

where H, H and H+ correspond to the peak heights (in arbitrary units)
0 +

of the three-photon, incoherent Rayleigh and fluorescence components,

respectively. D = 2kd is the reduced distance, where k is the

wavenumber and d is the atom-surface distance. The Drude model is used

for the dielectric function of the metal, while the dielectric function

of the gas medium is set equal to one. The detuning w21 - wL is 1 A and

the Rabi frequency is 10 A, in the unit of Einstein's A-coefficient for

spontaneous decay. The solid curves are for the induced transition

dipole of the atom oriented perpendicular to the surface, and the dashed

curves are for the parallel case.

2. Rough surface-induced phase-decay constant y as a function of the semi-

minor axis b of the surface protrusion, where the semi-major axis is

fixed at 100 A. y is in the unit of Einstein's A-coefficient.

3. Geometry of an electric dipole in a phase-conjugated (time-reversal)

cavity. The dipole with moment p = pe3 is located at the center of the

cavity, where e3 is the unit vector along the x3 -axis. The emitted

radiation field at the point (r,8) is denoted by (ErEe) inside the

cavity.

4. Normalized decay rate constant B of the dipole versus q2/n 1' with fixed

reflectivity Ilr: (a) In] = 1%; (b) Irl - 2% (c) Ini = 3%. The results P.

show that the lifetime of the dipole is sensitive to hni and n 2/r of

the PCM cavity. There is a critical value of n2/ri that leads to B Z 0,

i.e., the lifetime approaches it finity. In these curves, the values of

X 0.3 pm and r0  100 A are used.

0......... .. . . . . .. . . . . .
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5. Schematic diagram of laser-induced periodic structure, where E and E
1 3

are the incident waves with a phase mismatching vector A. The

amplitude and lifetime of the intereference pattern are governed by

4,J.

del -.0 .%.
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